以下文章轉(zhuǎn)載自:
American Journal of Neuroradiology
Presurgical Mapping with fMRI and DTI: Soon the Standard of Care?
The technique of fMRI has been around for over 30 years, and DTI for about 15 years. The first application of fMRI was by Ogawa et al, in 1990. In a rat model, this team was able to manipulate the blood oxygen level–dependent (BOLD) signal by inducing changes in deoxyhemoglobin concentrations with insulin-induced hypoglycemia and anesthetic gases. About a year later, Kwong and Belliveau published the first images of cerebral areas that responded to visual stimulation and vision-related tasks.
DTI was first described by Basser et al, who were experimenting on a voxel-by-voxel characterization of 3D diffusion profiles, which took into account anisotropic effects (instead of eliminating them, as in standard DWI). Tractography (or fiber tracking) was developed by applying statistical models to DTI data to obtain anatomic fiber bundle information.
Although both fMRI and DTI are now currently available in most scanners, well beyond the framework of academic institutions and research protocols, these techniques are not quite considered “standard of care.” Indeed, the processes that govern the translation of new technology into clinical practice are complex. Even more complex are the processes that lead to establishing clinical practice as standard of care, particularly at a time when established patterns of care delivery are being increasingly challenged and economic difficulties affect all aspects of society, certainly including health care.
However, some challenges, especially with fMRI, go back to basic cerebrovascular physiology. The cerebrovascular response to neuronal activation, also referred to as “functional hyperemia,” was first recognized in 1890 by Roy and Sherrington, who initially proposed a metabolic hypothesis to the phenomenon, ie, mediation via release from neurons of vasoactive agents in the extracellular space. The major role of astrocytes as key intermediaries in the neurovascular response — being interposed between blood vessels and neuronal synapses via their foot processes as modeled in the “tripartite synapse model” of the neurovascular unit — has since been recognized. Although complex, astrocyte response to changes in synaptic activity is primarily mediated by glutamate receptors through changes in intracellular Ca2+ concentration.
In fMRI, contrast is based on the BOLD effect, which reflects local shifts of deoxygenated-to-oxygenated hemoglobin ratios due to local increases in blood flow in excess of oxygen utilization following brain activity. As a result, the foundation of the fMRI BOLD signal is based on local changes in cerebral blood flow that are not linearly related to the metabolic changes inducing the flow change.
Therefore, BOLD fMRI rests on 3 major approximations: 1) the technique does not directly reflect neural activity, ie, generation and propagation of action potentials, synaptic transmission, or neurotransmitter release/uptake; 2) the changes in BOLD signal originate from that portion of the vasculature experiencing the greatest change in oxygen concentration, which occurs in the venules in the immediate vicinity of the active neurons; and 3) more importantly, fMRI signal relies on intact “neurovascular coupling,” the phenomenon that links neural activity to metabolic demand and blood flow changes.
The main reason fMRI is clinically useful most of the time is that under most circumstances neurovascular coupling remains fully intact, unaltered by confounding disorders that can interfere with this relationship. However, it has long been known that neuronal activation results in local blood flow increases that exceed local oxygen consumption, so that the oxygen utilized may constitute a small fraction of the amount delivered. Under normal conditions, the oxygen concentration in draining venules increases during neuronal activation. The original researchers who discovered this phenomenon named it “neurovascular uncoupling” or “neurovascular decoupling.” From a medical perspective, “uncoupling” or “decoupling” implies a pathologic condition, suggesting something abnormal about tissue that demonstrates this phenomenon. More recently, researchers have preferred the term “functional hyperemia” to describe the phenomenon. In fact, when there is interference with the mechanism producing functional hyperemia, the term "neurovascular uncoupling" has been re-applied, albeit with a completely opposite meaning from that originally used. Impairment in the flow response leads to neurovascular uncoupling and a reduced BOLD signal in response to neural activity, which can lead to false-negative errors in fMRI maps.
John Ulmer, reporting on a series of 50 patients, found that although accurate cortical activation could be demonstrated most of the time, various cerebral lesions could cause false negatives in fMRI results when compared with other methods of functional localization, suggesting contralateral or homotopic reorganization of function. He further suggested that pathologic mechanisms such as direct tumor infiltration, neovascularity, cerebrovascular inflammation, and hemodynamic effects from high-flow vascular lesions (ie, arteriovenous malformations and fistulas) could trigger “neurovascular uncoupling” in those patients. Neurovascular uncoupling, and other pitfalls of fMRI, are briefly discussed.
David Mikulis discusses “neurovascular uncoupling syndrome,” where lack of functional hyperemia during neuronal activation can have long-term consequences on the integrity of the tissue in the absence of acute ischemia.
Jay Pillai discusses the successful clinical application of a technique to improve the consistency of BOLD fMRI by using a breath-holding technique.
Aaron Field discusses the technique, clinical use, and some limitations of DTI and tractography, and describes patterns of alteration of white matter fiber tracts by neoplasms and other lesions.
Lastly, Wade Mueller shows that a neurosurgeon may obtain significant improvements in clinical outcomes and a drastic reduction in complication rates when working with a team that provides presurgical mapping of cerebral lesions by using fMRI and DTI (wisely, fully acknowledging their limitations) and when various team members clearly communicate using a common language.
Functional MRI and DTI are extremely useful techniques that have become increasingly available to neuroradiologists in recent years. As with any technique, these work best as parts of a whole. A good understanding of physiologic mechanisms is necessary to make us good “functional” specialists, and a good understanding of the limitations of any technique is necessary to make us better physicians.
Image modified from: Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns.
2025年4月13日,由深圳市美德醫(yī)療電子技術(shù)有限公司主辦的第15屆Task-fMRI基礎(chǔ)培訓(xùn)班在深圳總部圓滿收官。來(lái)自全國(guó)各地醫(yī)療機(jī)構(gòu)、高校的臨床醫(yī)生、科研萌新齊聚鵬城,通過(guò)三天的理論實(shí)踐深度交融,完成對(duì)fMRI技術(shù)的系統(tǒng)性學(xué)習(xí),助力學(xué)員掌握f(shuō)MRI技術(shù)的核心技能。培訓(xùn)班延續(xù)"理實(shí)結(jié)合、學(xué)科交叉"的特色,特邀深圳大學(xué)成曉君教授、王超教授等領(lǐng)銜授課。課程設(shè)置兩大核心模塊:基礎(chǔ)理論精講涵蓋fMRI原理、實(shí)驗(yàn)范式設(shè)計(jì)及統(tǒng)計(jì)學(xué)應(yīng)用;實(shí)踐操作帶教覆蓋E-Prime任務(wù)編程、SPM數(shù)據(jù)處理全流程。注重培養(yǎng)學(xué)員的自主操作能力,使學(xué)員們能夠切實(shí)掌握Task-fMRI的數(shù)據(jù)處理方法,實(shí)現(xiàn)從零基礎(chǔ)到獨(dú)立完成數(shù)據(jù)處理過(guò)程。為響應(yīng)學(xué)員在教學(xué)過(guò)程中反饋的需求:結(jié)合核磁掃描及配套腦科學(xué)研究設(shè)備的操作使用,系統(tǒng)梳理fMRI實(shí)驗(yàn)從設(shè)備操作到數(shù)據(jù)采集的全流程。吳杞柱博士帶領(lǐng)一眾學(xué)員觀摩了美德醫(yī)療一系列腦科學(xué)研究設(shè)備,詳細(xì)介紹了美德模擬磁共振(Mock MR)、磁共振多參數(shù)被試監(jiān)測(cè)系統(tǒng)以及腦功能視聽(tīng)覺(jué)刺激系統(tǒng)在fMRI實(shí)驗(yàn)中的使用,加深學(xué)員對(duì)task fMRI數(shù)據(jù)采集過(guò)程的理解。為期三天緊湊而豐富的教學(xué)及實(shí)操課程,讓一眾學(xué)員們表示受益匪淺,他們認(rèn)為這次培訓(xùn)干貨滿滿,不僅提高了自己的專業(yè)技能,還為今后的研究工作提供了有力的支持。未來(lái),我們將繼續(xù)深耕腦智科學(xué)基礎(chǔ)研究領(lǐng)域,持續(xù)服務(wù)于客戶需求,致力于打造醫(yī)學(xué)影像醫(yī)學(xué)研用一體化平臺(tái),為中國(guó)腦科學(xué)事業(yè)發(fā)光發(fā)熱!
繪成錦繡展舊歲,揄?yè)P(yáng)風(fēng)雅待新年。近日,美德醫(yī)療2024年度總結(jié)大會(huì)完美收官。年會(huì)上半部分,由部門(mén)領(lǐng)導(dǎo)依次匯報(bào)各部門(mén)年度工作,全面復(fù)盤(pán)項(xiàng)目進(jìn)度,匯總生產(chǎn)基本情況,盤(pán)點(diǎn)體系運(yùn)營(yíng)工作,歸總成本把控效用,分析市場(chǎng)趨勢(shì)變動(dòng),進(jìn)而結(jié)合公司戰(zhàn)略規(guī)劃及市場(chǎng)宏觀環(huán)境進(jìn)行2025年的工作部署。年會(huì)下半部分,多才多藝的美德人帶來(lái)了一場(chǎng)場(chǎng)精彩絕倫的文藝表演,《吉他串燒》展現(xiàn)了員工朝氣蓬勃、積極向上的精神風(fēng)貌,幽默詼諧的脫口秀更是引得全場(chǎng)笑聲連連,掌聲雷動(dòng)。最后,由總經(jīng)理湯潔女士壓軸點(diǎn)評(píng)與總結(jié),回望2024年的發(fā)展歷程,美德醫(yī)療始終本著客需為本、品質(zhì)為先的發(fā)展理念,致力于專研更精尖的產(chǎn)品,拓展更專業(yè)的技術(shù)領(lǐng)域,完善產(chǎn)學(xué)研用一體化平臺(tái),打造更完整的醫(yī)學(xué)影像整體解決方案。未來(lái),也將繼續(xù)用心服務(wù)每一位客戶,譜寫(xiě)2025年“奮進(jìn)”新藍(lán)圖!
都說(shuō)北京的秋天是出了名的美好,老舍先生也說(shuō):秋天一定要住北平。我們心心念念了一整年,大Boss一聲令下,我們出發(fā)啦! 11月18日,美德同事一行40人,帶著南國(guó)的熱情,從一個(gè)只有夏天和冬天的城市,以深圳的速度和激情,飛抵四季分明的北京,一同領(lǐng)略北國(guó)的秋韻。 北京的秋天果然很美,美得出乎意料,瓦藍(lán)的天空將整個(gè)城市映襯得干凈而清朗,金黃的銀杏葉燦爛奪目,驚起南方大小土豆“哇”聲一片,深秋的暖陽(yáng)透過(guò)紅葉的縫隙照射到行人臉上,人們的笑容是如此陽(yáng)光明媚……我們參加升旗儀式,感受國(guó)歌的莊嚴(yán)和力量;我們登天安門(mén)城樓,感受歷史的厚重與嚴(yán)肅;我們瞻仰人民英雄紀(jì)念碑,緬懷先烈的勇敢無(wú)畏;我們?cè)谔彀查T(mén)廣場(chǎng)踱步,回望歷史長(zhǎng)河,感嘆中華文明。我們熱淚盈眶,我們躊躇滿志,我們自豪驕傲。何其有幸,生在春風(fēng)里,長(zhǎng)在紅旗下。我們驕傲,因?yàn)槲覀兪侵袊?guó)人!俯瞰神州大地,目光所至,皆為華夏;五星閃耀,皆為信仰。 當(dāng)五星紅旗隨著太陽(yáng)徐徐升起的那一刻,愛(ài)國(guó)情懷已深深植根于我們每個(gè)人心間,它將生生不息,代代相傳。 走進(jìn)故宮,其巧妙的結(jié)構(gòu)、華麗的造型、博大的氣魄,無(wú)一不展示著古代皇權(quán)的霸氣和自信,讓人感到無(wú)比震撼。故宮的藝術(shù)之美,歷史之美,文化之美,舉世無(wú)雙。圓明園,這里的湖泊、假山和古建筑,共同演繹著和諧之美。坐上時(shí)光巴士,一幅幅流動(dòng)的畫(huà)卷,讓人仿佛回到三百年前,自己就是那宮廷院內(nèi)的一員,沉浸式體驗(yàn)了穿越歷史的樂(lè)趣。這里匯聚了自然之美、藝術(shù)之美和精神之美。漫步圓明園,感受歷史的厚重與歲月的沉淀,每一處都是故事,每一景都是回憶。秋天的長(zhǎng)城,猶如一條蜿蜒的巨龍,盤(pán)旋在群山峻嶺之間,披著金色的霞光,沐浴在涼爽的秋風(fēng)中。長(zhǎng)城之上,步步皆歷史,磚磚顯風(fēng)華,攀登之間,感受千年滄桑。太陽(yáng)照,長(zhǎng)城長(zhǎng),長(zhǎng)城雄風(fēng)萬(wàn)古揚(yáng)。中國(guó)軍事博物館—軍事之翼,博物館里展翅,榮耀之光熠熠生輝。館內(nèi)各種模型、圖片和實(shí)物,將戰(zhàn)爭(zhēng)的殘酷和城市的堅(jiān)韌展示得淋漓盡致。站在這些展品前,你會(huì)不禁為那些捍衛(wèi)和平的勇士們感到自豪,并深深體會(huì)到保家衛(wèi)國(guó)的重要性。雍和宮的每一座大殿、每一尊佛像、每一道門(mén)檻,都是歷史的沉淀和文化的傳承,這里的一景一物,無(wú)不在訴說(shuō)著一個(gè)時(shí)代的輝煌。 歷史文化之旅, 國(guó)子監(jiān)是必去之地,它被譽(yù)為中國(guó)古代最高學(xué)府。在這里的每一步行走, 都似在與古人先賢對(duì)話,你能強(qiáng)烈感受到古代崇文重教的氛圍,以及古代學(xué)術(shù)的繁榮與嚴(yán)謹(jǐn)。游玩是生活的調(diào)味劑,但工作的責(zé)任心始終掛在心頭,這不是負(fù)擔(dān),是美德人的情懷和使命。 抵達(dá)當(dāng)晚,同事們顧不上早起的疲憊和一路奔波的辛苦,饒有興致地參觀了中科院生物物理所腦與認(rèn)知國(guó)家重點(diǎn)實(shí)驗(yàn)室。美德公司成立至今,已有多款產(chǎn)品應(yīng)用于中科院腦科學(xué)研究試驗(yàn)。同事們與相關(guān)專家進(jìn)行了深入的技術(shù)交流,這種面對(duì)面的溝通有利于我們改進(jìn)產(chǎn)品,提升品質(zhì)和更好地服務(wù)祖國(guó)醫(yī)學(xué)科研事業(yè)。我司與清華大學(xué)生物醫(yī)學(xué)影像中心也已合作多年,20日下午,同事們帶著激動(dòng)的心情走進(jìn)這座神圣的高等學(xué)府,在研究中心實(shí)驗(yàn)室和老師們進(jìn)行了熱切而實(shí)質(zhì)的交流。切磋完畢,同事們漫步清華校園,盡情地吸取這座智慧殿堂帶來(lái)的榮耀和力量。觀光旅游的同時(shí)兼有學(xué)術(shù)交流,此行簡(jiǎn)直不要太超值。能為中國(guó)醫(yī)學(xué)事業(yè)做出自己應(yīng)有的貢獻(xiàn),美德人當(dāng)仁不讓。提高中國(guó)醫(yī)療科研水平,我們深感責(zé)任深重;展望未來(lái),我們信心滿懷。 游頤和園,觀天壇,打卡恭王府,我們?cè)诰吧焦珗@探尋歷史足跡,我們?cè)诒焙9珗@信步,漢服體驗(yàn),我們?cè)诤蠛5南镒永镩e逛,品嘗北京小吃,我們?cè)诘略粕缋锫?tīng)相聲……我們沉醉于長(zhǎng)安街的華燈初上,又被鳥(niǎo)巢和水立方的璀璨燈光所驚艷,我們驚嘆于國(guó)家大劇院的夜景,又在前門(mén)大街的暮色里探尋……大鴨梨餐廳的北京烤鴨,油亮酥脆的外皮和柔嫩多汁的鴨肉相得益彰,色香味俱佳。咬一口,那酥皮流出的油脂在舌尖瞬間流轉(zhuǎn),香氣四溢,每一口都是對(duì)中華美食的敬仰。 東來(lái)順的涮羊肉,熱氣騰騰,暖胃更暖心,團(tuán)隊(duì)圍坐,笑語(yǔ)連連,推杯換盞,同事情誼在這一刻悄然升溫。 此次北京之行歷時(shí)5天,既是團(tuán)建,也是一趟愛(ài)國(guó)主義教育之旅,還是一趟飽覽中華五千年文明歷史的文化之旅;既是旅游,也是游學(xué);既是游玩,順帶工作,行程豐富,收獲滿滿。 揮別北京,那胡同里斑駁的墻,紫禁城里威嚴(yán)的梁,天安門(mén)前的紅旗飄揚(yáng),故宮深院的悠長(zhǎng),一幕幕在眼前回蕩,京城之行皆是華章。團(tuán)隊(duì)相伴凝聚力量,為夢(mèng)續(xù)航。 盼與美德攜手共赴新程,再書(shū)佳績(jī)!
由中華醫(yī)學(xué)會(huì)、中華醫(yī)學(xué)會(huì)放射學(xué)分會(huì)主辦,上海市醫(yī)學(xué)會(huì)、上海市醫(yī)學(xué)會(huì)放射學(xué)分會(huì)承辦的中華醫(yī)學(xué)會(huì)第三十一次放射學(xué)學(xué)術(shù)大會(huì)于11月15日在上海盛大啟幕,來(lái)自全國(guó)各地和海外的放射學(xué)領(lǐng)域?qū)<摇W(xué)者及行業(yè)精英齊聚一堂,共同見(jiàn)證了這場(chǎng)學(xué)術(shù)盛會(huì)。本次大會(huì)以“規(guī)范創(chuàng)新,引領(lǐng)發(fā)展”為主題,探討放射學(xué)的新理念、新趨勢(shì);匯聚各方智慧,分享前沿成果,交流臨床經(jīng)驗(yàn),共同推動(dòng)放射醫(yī)學(xué)的規(guī)范化、精準(zhǔn)化、智能化發(fā)展。美德醫(yī)療作為腦科學(xué)設(shè)備及醫(yī)學(xué)影像配套產(chǎn)品的整體解決方案提供商,本次攜新品“磁共振病人監(jiān)護(hù)儀”亮相CCR。作為國(guó)產(chǎn)首款通過(guò)NMPA注冊(cè),能在3T磁場(chǎng)強(qiáng)度下監(jiān)測(cè)病人血氧、血壓、脈率、灌注指數(shù),且采用無(wú)線信號(hào)傳輸,核磁室內(nèi)安全移動(dòng)無(wú)束縛的產(chǎn)品,一經(jīng)發(fā)布亮相,就贏得了眾多專家及同行們的關(guān)注,現(xiàn)場(chǎng)人潮涌動(dòng),大咖集聚。磁共振病人監(jiān)護(hù)儀是一款針對(duì)磁共振成像復(fù)雜的電磁環(huán)境而開(kāi)發(fā)設(shè)計(jì)的監(jiān)護(hù)設(shè)備,用于在磁共振掃描過(guò)程中監(jiān)測(cè)和記錄病人的生病體征,是特殊患者(如危重癥患者、需要鎮(zhèn)靜的小兒患者、麻醉狀態(tài)下的患者及其他高風(fēng)險(xiǎn)人群)進(jìn)行磁共振檢查的必備監(jiān)護(hù)設(shè)備,讓更多患者無(wú)憂接收掃描,為安全保駕護(hù)航?!暗歉咄h(yuǎn),方能見(jiàn)天地之大。”決逐頂尖技術(shù),方以科技創(chuàng)新為不竭動(dòng)力。愿你我攜手并進(jìn),為放射醫(yī)療高質(zhì)量發(fā)展貢獻(xiàn)力量。
美德醫(yī)療作為國(guó)內(nèi)廣大磁共振腦功能影像研究者的老朋友,始終致力于搭建不同學(xué)科研究者之間的溝通橋梁,積極推動(dòng)相關(guān)知識(shí)和技能的普及和應(yīng)用,定期開(kāi)辦各類影像診斷、影像技術(shù)和數(shù)據(jù)處理類培訓(xùn)課程。時(shí)至今日Task-fMRI基礎(chǔ)培訓(xùn)班已成功舉辦至第14屆,并于11月8日-10日?qǐng)A滿舉行!本次培訓(xùn)班有幸邀請(qǐng)到深圳大學(xué)心理學(xué)院成曉君教授、王超教授,以及美德醫(yī)療科研專家、應(yīng)用專家進(jìn)行深度授課,通過(guò)點(diǎn)對(duì)點(diǎn)的指導(dǎo)方式,為學(xué)員們答疑解惑,幫助學(xué)員們理解和掌握Task-fMRI技術(shù)的應(yīng)用,從實(shí)驗(yàn)設(shè)計(jì)、任務(wù)編寫(xiě)到數(shù)據(jù)處理全流程帶教。為期三天緊湊而豐富的教學(xué)及實(shí)操課程,一眾學(xué)員皆對(duì)培訓(xùn)班學(xué)習(xí)熱情不減,不同學(xué)科背景的學(xué)員在Task-fMRI的學(xué)習(xí)過(guò)程中相互碰撞思維,共同探索;至此,學(xué)員們不僅完成了影像技術(shù)的繼續(xù)教育,還促進(jìn)了相關(guān)知識(shí)和技能的普及和應(yīng)用。未來(lái),我們將繼續(xù)深耕腦智科學(xué)基礎(chǔ)研究領(lǐng)域,持續(xù)服務(wù)于客戶需求,致力于打造醫(yī)學(xué)影像醫(yī)學(xué)研用一體化平臺(tái),為中國(guó)腦科學(xué)事業(yè)發(fā)光發(fā)熱!